Balmer line formation in solar flares affected by return currents

نویسندگان

  • J. Štěpán
  • J. Kašparová
  • M. Karlický
  • P. Heinzel
چکیده

Aims. We investigate the effect of the electric return currents in solar flares on the profiles of hydrogen Balmer lines. We consider the monoenergetic approximation for the primary beam and runaway model of the neutralizing return current. Methods. Propagation of the 10 keV electron beam from a coronal reconnection site is considered for the semiempirical chromosphere model F1. We estimate the local number density of return current using two approximations for beam energy fluxes between 4 × 10 11 and 1 × 10 12 erg cm −2 s −1. Inelastic collisions of beam and return-current electrons with hydrogen are included according to their energy distributions, and the hydrogen Balmer line intensities are computed using an NLTE radiative transfer approach. Results. In comparison to traditional NLTE models of solar flares that neglect the return-current effects, we found a significant increase emission in the Balmer line cores due to nonthermal excitation by return current. Contrary to the model without return current, the line shapes are sensitive to a beam flux. It is the result of variation in the return-current energy that is close to the hydrogen excitation thresholds and the density of return-current electrons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Response of optical hydrogen lines to beam heating: I. Electron beams

Context. Observations of hydrogen Balmer lines in solar flares remain an important source of information on flare processes in the chromosphere during the impulsive phase of flares. The intensity profiles of optically thick hydrogen lines are determined by the temperature, density, and ionisation structure of the flaring atmosphere, by the plasma velocities and by the velocity distribution of p...

متن کامل

Hα-line impact polarisation by electron beams in solar flares

The Hα-line intensity, linear and circular impact polarisation were calculated during the impulsive phase of flares using the density matrix approach. Depolarising effects of diffusive radiation and collisions with thermal electrons are considered for a 3 levels Hydrogen model atom with Zeeman splitting in weak and intermediate magnetic fields. Electron beam energy and angular distributions in ...

متن کامل

Solar Latitudinal Distribution of Solar Flares around the Sun and Their Association with Forbush Decreases during the Period of 1986 to 2003

Solar flare events of high importance were utilised to study solar latitudinal frequency distribution of the solar flares in northern and southern hemisphere for the solar cycle 22 to recent solar cycle 23. A statistical analysis was performed to obtain their relationship with sudden storm commencement (SSCs) and Forbush decrease events (Fd) of cosmic ray intensity. An 11-year cyclic variation ...

متن کامل

On the origin of solar white-light flares

Using the Hα line intensity as a constraint, we study the role of a chromospheric condensation and the role of nonthermal effects in producing the continuum enhancement of white-light flares. Within an acceptable range of Hα line intensities and electron energy flux, it is shown that neither a chromospheric condensation nor non-thermal effects alone can directly explain the observed continuum e...

متن کامل

The sensitivity of Lick indices to abundance variations

We present results of model atmosphere/line formation calculations which quantitatively test how the 21 classical and four higher-order Balmer-line Lick/IDS indices (Worthey et al. 1994; Worthey & Ottaviani 1997) depend on individual elemental abundances (of carbon, nitrogen, oxygen, magnesium, iron, calcium, natrium, silicon, chromium, titanium) and overall metallicity in various stellar evolu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007